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Abstract

This research delves into the use of deep learning techniques for modeling lithium-ion
batteries, with a particular focus on sequence-to-sequence architectures. At the heart
of this study is a comprehensive synthetic dataset, capturing a wide range of battery
dynamics, sourced from validated Equivalent Circuit Models (ECMs). This dataset
enables training across diverse scenarios, from static conditions like constant current
charging to dynamic situations such as vehicle drive cycles. It also shows the model’s
ability to generalize across different battery chemistries and capacities.

Various machine learning architectures tailored for battery modeling are assessed and
compared in this study. This comparison highlights the advantages and drawbacks of
each model, providing insights for further optimization and model selection.

The Transformer architecture, more specifically its decoder-centric variant, is given
special emphasis. With an optimized set of parameters, this model excels in predicting
the State-of-Charge (SoC). Its rapid computational speed during inference underscores its
practical utility. Impressively, the model demonstrates strong transfer learning abilities,
adapting to different battery types like LFP/2.6Ah and NMC/64Ah, showcasing the
adaptability of deep learning across diverse battery specifications. These achievements
are further extended to a general meta-learning model, which is then tested on real-world
data.

This research establishes a benchmark for deep learning models in battery modeling,
highlighting the innovative application of the Decoder model. While some models
have been previously explored, the uniqueness of this research lies in its comprehensive
evaluation using a consistent dataset. By merging a dynamic synthetic dataset with a
detailed model comparison and introducing the Decoder model, this study sheds light
on the potential of deep learning in battery modeling. Although the real-world data
accuracy hasn’t surpassed traditional ECMs yet, the results emphasize the potential and
effectiveness of deep learning meta-models in the battery domain.
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1 Introduction

The lithium-ion battery market, and the broader battery market, is currently a focal point
of global attention due to a confluence of environmental, technological, and economic
factors. The importance of these is underscored by their potential to revolutionize various
aspects of our lives, from transportation to energy storage, and their role in mitigating
the impacts of climate change.

Environmental Considerations and Government Policies: The urgency of
addressing climate change has led to a global push towards decarbonization. Governments
worldwide are implementing policies to reduce carbon emissions and promote the use
of renewable energy sources. Lithium-ion batteries play a crucial role in this transition.
They provide a means of storing energy from renewable sources such as wind and solar,
which can be inconsistent in their output. This energy can be stored when production is
high and then used when production is low, thus smoothing out the supply and making
renewable energy more reliable. Furthermore, batteries are key to the electrification
of transportation, another major source of carbon emissions. Government policies are
increasingly favoring electric vehicles (EVs) over internal combustion engine vehicles. For
instance, several countries, have announced plans to ban the sale of new petrol and diesel
cars within the next couple of decades. This shift towards EVs is driving their demand,
which is the dominant technology for EV energy storage due to their high energy density
and long cycle life [1].

Impact on Social Life and Urban Transportation: The rise of lithium-ion
batteries is also having a significant impact on urban transportation and, by extension,
social life. Electric bikes, scooters, and other forms of micro-mobility are becoming
increasingly popular in cities around the world. These vehicles, offer a convenient, eco-
friendly alternative to traditional forms of transportation, reducing traffic congestion
and air pollution. Moreover, their use in public transportation systems, such as buses
and trams, is growing. This not only contributes to cleaner air in urban areas but also
enhances the quality of life for city dwellers by reducing noise pollution [2].

General Transportation: In the broader transportation sector, lithium-ion batteries
are driving a revolution. Electric cars, which are rapidly gaining market share, rely on
them for their operation. The performance and range of EVs have improved dramatically
in recent years, largely due to advances in technology. This potential extends beyond road
vehicles. In the aviation industry, researchers are exploring their use in electric aircraft,
which could significantly reduce the sector’s carbon footprint. Similarly, in the maritime
industry, there is growing interest in electric ships powered by batteries [1].

Economic Implications: The growing demand is also creating economic opportunities.
The market is expected to experience significant growth in the coming years, creating
jobs and contributing to economic development. Moreover, countries with reserves of

1



1.1 Motivation

lithium, such as Australia, Chile, and Argentina, stand to benefit from the increasing
demand for this resource [1].

The significance of the battery market is deeply rooted in its potential to pave the
way for a more sustainable, low-carbon future. The development and implementation of
these have profound effects on the environment, transportation, urban living, and the
economy. Accurate modeling is crucial as it allows for better prediction and understanding
of performance, lifespan, and safety. This is particularly important in electric vehicles and
renewable energy storage systems, where efficient power management can significantly
improve energy utilization and reduce costs. Furthermore, better models can help
in avoiding issues such as thermal runaway and improving aging predictions, thereby
enhancing safety and reliability. Thus, the importance of modeling extends beyond the
battery market itself, playing a vital role in our transition toward a more sustainable and
eco-friendly future.

1.1 Motivation

Lithium-ion batteries, encapsulating intricate electrochemical processes, have long posed a
significant challenge for accurate modeling. The field, while advancing, has been tradition-
ally dominated by methods such as Equivalent Circuit Models (ECMs), electrochemical
and physical models. However, these methods have inherent limitations.

ECMs, which represent battery behavior via electrical circuits, often require comprehen-
sive testing protocols and a significant amount of time for accurate parameter tuning. On
the other hand, while electrochemical and physical models offer a deeper understanding
of internal processes, they necessitate high expertise and more complex testing protocols.
A key drawback of these methods is that once they are established and parameters
determined, the data used for this purpose is typically discarded, suggesting a significant
underutilization of valuable information. This circumstance indicates a significant research
need: improving data efficiency and streamlining the model configuration process for
cross-chemistry transfer.

The rise of deep learning and neural networks in various fields has opened new horizons
for modeling. With demonstrated transformative potential in areas such as computer
vision, bioinformatics, and natural language processing, neural networks are indicative
of an ability to learn complex patterns from large datasets [3, 4, 5]. This makes them
a promising tool for addressing the intricacies of lithium-ion batteries. However, the
practical application of these advanced techniques in the realm of battery modeling
remains a key concern that is yet to be fully addressed.

The potential of neural networks in revolutionizing battery modeling can be argued
based on three key points:

Comprehensive Data Utilization and Simplification of Testing Protocols:
Unlike traditional models, neural networks can learn from a diverse range of data, including
arbitrary profiles that span possible battery behaviors. This ability could potentially
simplify and reduce the cost of testing protocols, addressing an urgent research requirement
unmet by conventional methods.
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1.2 Initial Condition

Democratization of Model Development and Computational Efficiency:
The advent of neural networks in the field of battery modeling holds the promise of
democratization. Once a neural network architecture is established, it can be trained with
minimal human intervention, which is a departure from traditional methods that often
require expert interpretation of test data for parameter fitting. Additionally, compared
to traditional models, neural networks offer computational advantages during inference,
making them a practical choice in scenarios where quick model solutions are required.

Meta-learning Across Different Chemistries with Transformer Models: Trans-
former models, which have shown remarkable success in various fields, hold promise for
meta-learning across different battery chemistries. Unlike methods like ECMs, which
often need to be redeveloped for each different chemistry, a Transformer model could
potentially be trained on data from multiple chemistries. This could result in a versatile
model capable of handling a variety of batteries, addressing the current research gap and
streamlining the modeling process.

Thus, the use of neural networks, and Transformer models in particular, in lithium-ion
battery modeling offers a promising approach to overcome the limitations of traditional
methods. By maximizing data utilization, democratizing the modeling process, and
enabling meta-learning across different chemistries, these models have the potential to
revolutionize the field of battery modeling. Such advancements could lead to more
accurate predictions of battery performance and lifespan, significantly contributing to
the development of more efficient and reliable energy storage systems. Nevertheless, the
current research landscape emphasizes the need for further exploration, research, and
application of these innovative techniques in battery modeling.

1.2 Initial Condition

The initial condition of the thesis is characterized by a well-structured and comprehensive
setup, encompassing specific resources and data. This setup provides a robust foundation
for the research, ensuring that the necessary tools, information, and computational
capabilities are readily available.

Measurement Data and ECM Model: The cornerstone of the thesis is the measure-
ment data and the corresponding Equivalent Circuit Model (ECM) for two distinct types
of lithium-ion battery cells: Nickel Manganese Cobalt (NMC/64Ah), and Lithium Iron
Phosphate (LFP/2.6Ah). The dataset includes a dynamic profile for the NMC battery,
which has not been seen by the ECM. This data is crucial as it provides a test for the
model’s ability to generalize beyond the conditions it was trained on. In addition to the
dynamic profile, the dataset includes other measurements that were collected for the
ECMs parameter estimation (pulse characterization, capacity and monotonic degradation
measurements).

Functional Mock-up Unit (FMU): The ECMs are provided in a Functional Mock-up
Unit (FMU), a format for model exchange and co-simulation of dynamic models. An FMU
is essentially a container that encapsulates a model and its solver in a way that allows it
to be shared across different simulation environments. The FMUs for this project contain
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1.3 Goal of this Thesis

the ECMs for the NMC and LFP batteries, which have been validated and parameterized
based on the provided measurement data.

Computational Infrastructure: The work is carried out on a local PC running
Windows, equipped with an Nvidia A5000 24GB GPU. This high-performance GPU
provides substantial computational power for training neural networks. However, its
memory size also sets an upper limit for the model size, complexity, and dataset size that
can be handled.

1.3 Goal of this Thesis

The objective of this thesis is to develop a machine learning model for battery modeling.
This encompasses several stages, each contributing to the overall integrity and efficacy of
the resultant model.

Synthetic Dataset Analysis and Confidence Statement: The initial stage involves
an analysis of the synthetic dataset, derived from the FMUs. Evaluating the dataset’s
diversity is important because it helps reduce uncertainties related to out-of-distribution
scenarios, improving the model’s ability to generalize. An assessment of the data’s quality
ensures its accurate representation of battery behavior under a variety of conditions.
A confidence statement regarding the model’s transferability to real-world scenarios is
formulated based on the synthetic dataset. This process entails fine-tuning and testing
the model on real-world data and juxtaposing its predictions with actual outcomes. The
degree of alignment between the model’s predictions and the actual results showcases the
confidence in its transferability.

Benchmarking Machine Learning Methods: Subsequently, various machine
learning architectures are benchmarked to discern the most effective one for the given
battery modeling problem and dataset. This process involves training and testing each
architecture on the dataset, and comparing their performance based on appropriate
metrics.

Refinement and Advancement of the Premier Architecture: The leading
architecture undergoes innovative modifications, with an emphasis on exploring varied
encoding strategies and incorporating frequency elements. Additionally, it is subjected to
parameter optimization and evaluations, ensuring its capability to manage intricate tasks
and demonstrating its adaptability across diverse scenarios and tasks.

Performance Evaluation: The optimized model is evaluated on a real-world dataset
to assess its generalization capability. Its performance is benchmarked against an ECM
model to determine its relative effectiveness, accuracy, and adaptability.

In conclusion, the aspired target of this thesis is the development of a neural network
for battery modeling that is robust, accurate, and challenges traditional models in key
respects. This target involves a process of data analysis, model benchmarking and
optimization, and performance evaluation.
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2 Related Work

This section focuses on the current literature about battery modeling using only data-
driven methods. With the fast rate of advancements and the frequent publications of
new techniques, architectures, and optimization methods in Artificial Intelligence, staying
updated in this area, especially when it involves deep learning, is challenging. Later
sections will also cover related topics like time series and sequence-to-sequence modeling.

Deep learning techniques have been extensively utilized for State-of-Charge (SoC,
the battery’s remaining capacity) estimation in lithium-ion batteries, demonstrating
strengths and limitations. These methods are recognized for their robust nonlinear fitting
capabilities, particularly under dynamic conditions. They can automatically extract
features and learn the relationship between these and the battery behavior, making them
effective for SoC estimation tasks. One of the advantages of deep learning methods is
their ability to handle time-series data and retain previous information, which is crucial
for the desired estimation [6].

The use of 1D Convolutional Neural Networks (CNN) [7] and Transfer Learning
has been proposed for SoC estimation. The algorithm is trained using two publicly
available battery datasets and employs a transfer learning mechanism to enhance its
generalization capabilities. The architecture of the 1D CNN allows for the identification
of both long and short-term trends in the battery data. Key metrics of this approach
are its performance in terms of estimation accuracy, learning speed, and generalization
capability. The 1D CNN-based estimator performs at par with or better than existing
state-of-the-art estimators. Furthermore, the time required for offline training before
deploying the proposed model is lower than that for existing machine learning-based
predictor examples. This time is further reduced when transfer learning is employed. The
use of transfer learning also enables the model to predict accurately a target battery
dataset after being trained with a significantly smaller amount of data than is required
when training without transfer learning. This feature enhances the data efficiency of the
model [8].

The Long-Short-Term-Memory (LSTM) [9] network, a variant of Recurrent Neural
Network (RNN), is adept at handling sequential data, making it an ideal choice for
time-series data. The GridLSTM architecture extends the LSTM methodology to both
time and depth dimensions, thereby enhancing the LSTM’s functionality along the depth
dimension and improving the model’s performance. The model excels in estimating the
internal states of lithium-ion batteries by utilizing synthetic data from electrochemical
simulations. It can predict internal concentrations and potentials of both electrodes
using voltage, current, and temperature measurements. The model also showcases
high interpolation and extrapolation capabilities, performing well under new ambient
temperatures and significant measurement noise. However, the model also has certain
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2 Related Work

limitations. While LSTM networks are proficient at handling long-term dependencies,
they can still encounter the vanishing gradient problem during training. Similarly, the
GridLSTM architecture, despite mitigating the vanishing gradient problem, is not entirely
immune to it. Additionally, the model’s performance can degrade at extreme temperatures
due to the significant change in electrochemical dynamics. The model’s generalization
ability is demonstrated by its high performance at new ambient temperatures, not included
in the training data. As more data becomes available, the performance of the proposed
machine learning-based state estimation method will further improve [10].

Hybrid models for SoC estimation in lithium-ion batteries have been developed,
combining various neural network architectures and other methods to leverage their
strengths. One such model is the Convolutional Neural Network-Bidirectional Weighted
Gated Recurrent Unit (CNN-BWGRU) model, which integrates the feature extraction
capabilities of CNNs with the time-series data handling of the BWGRU. The CNN
component extracts spatial features from voltage, current, and temperature measurements,
which are subsequently processed by the BWGRU component to establish a nonlinear
relationship with the SoC. The BWGRU network, considering the influence of future
information on output results, is advantageous for applications with solid correlations such
as battery SoC. Despite its high accuracy, robustness, and good generalization ability, the
model faces challenges such as gradient disappearance and explosion during training [11].

Another hybrid model combines an RNN with an attention mechanism and a Kalman
filter. The LSTM network is utilized to capture temporal dependencies in the data, while
the attention mechanism is integrated to enable the model to focus on more relevant time
points in the data. This attention mechanism aids the model in distinguishing between
more "useful" and "less important" data, leading to faster convergence and a smaller
training loss. The Kalman filter is then applied to enhance the output results of the
attention network, providing an optimal estimation of the system state using data from
output observations of the system. Despite the complexity of this hybrid model, it has
demonstrated superior performance compared to a conventional LSTM network in terms
of final loss value, convergence speed, and smoothness during training, thus underscoring
its robustness and efficiency in SoC estimation [12].

Transformer-based [13] deep learning models have been employed for SoC esti-
mation, demonstrating their suitability for multivariate time-series data. The model’s
training involves two stages: unsupervised pre-training and downstream fine-tuning.
The unsupervised pre-training stage uses unlabeled data to train the model, while the
downstream fine-tuning phase uses labeled data for supervised learning. The proposed
model demonstrates superior performance in SoC estimation under various conditions,
including extreme cold temperatures. Furthermore, the model’s learned weights can be
transferred to another cell type, showcasing the potential for transfer learning. However,
the authors note that the model’s performance could potentially be improved with more
computational resources, allowing for larger contextual information from the past. Despite
these challenges, the proposed model presents a promising approach to SoC estimation,
addressing challenges related to data availability, transfer learning, training speed, and
model accuracy [14].

A hybrid Transformer network leverages the strengths of deep learning and robust
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control theory. The architecture of this network includes two parallel encoders and one
decoder. Each encoder, processing different input features, consists of a linear layer and
three homogeneous encoder layers. The outputs from these encoders are then concatenated
and sent to the decoder. To enhance the robustness of the SoC estimation, an L1 robust
observer is integrated into the architecture. This observer is designed to correct potential
learning fluctuations or errors, providing a more reliable and stable estimation. The
proposed method was validated using open datasets of a lithium-ion battery under various
temperatures. The authors highlight the transferability and generalizability of their
model, demonstrating its potential to predict accurately under different conditions. This
makes the proposed method a promising approach for SoC estimation, demonstrating the
potential of hybrid Transformer networks in this application [15].

However, all these methods also have their limitations. The complexity of deep learning
algorithms and the computational power required can be challenging to apply in practice,
especially when it comes to the design and optimization of the neural network architecture.
Furthermore, most of the existing works have conducted experiments at fixed charging
and discharging current, which may not be compatible with the actual operation [6].

In conclusion, deep learning techniques, particularly hybrid models and transformer-
based approaches have shown significant promise in SoC estimation for lithium-ion
batteries. As more data under various scenarios become available, the performance of
these machine learning-based state estimation methods will likely continue to improve.

7



3 Methodology

The intricate nature of battery systems necessitates the adoption of advanced modeling
approaches. This is addressed through a thorough examination of the fundamental
behavior of general lithium-ion battery cells, accompanied by a brief overview of traditional
state-of-the-art modeling methods. The generation of machine learning-based datasets,
which mirror real-world scenarios and span the full operating range of a battery, are also
discussed. This highlights the critical role of comprehensive datasets in achieving robust
state estimation. Machine learning models, specifically tailored for battery modeling, are
analyzed based on theoretical principles, with a particular emphasis on the Transformer
model. This model is singled out due to its ability to handle complex patterns and
dependencies in data, as well as its high potential for transfer and meta-learning across
different chemistry datasets. Moreover, a high-level description of the software architecture
that establishes these models is provided in this chapter.

3.1 Fundamentals of Lithium-Ion Batteries

The Electrochemical Model (often represented by the Doyle-Fuller-Newman model) and
the Reduced Order Models (often represented by the Equivalent Circuit Model) are
fundamental to lithium-ion battery modeling. The Electrochemical Model, while computa-
tionally demanding and requiring extensive parameter estimation and testing, provides a
high level of accuracy, making it valuable for a detailed understanding of battery behavior.
The Reduced Order Model, which is partly derived from the Electrochemical Model, is less
complex and requires fewer computational resources and time for parameter estimation,
making it suitable for quick, system-level simulations. Both models are crucial in the
battery modeling world, with the Electrochemical Model offering depth and accuracy,
and the Reduced Order Model providing efficiency and speed.

The Doyle-Fuller-Newman (DFN) model is a widely used electrochemical model for
predicting the behavior of lithium-ion batteries and is shown in Figure 1. It balances
computational efficiency with accuracy by using a set of partial differential equations to
describe complex processes like lithium-ion diffusion (movement of ions due to concentra-
tion gradients) and electrochemical reactions within the battery. This balance makes it a
practical tool for battery researchers and engineers, enabling the design of more efficient
and reliable batteries. A comprehensive model typically requires hours to spatially dis-
cretize the system and solve it numerically as a set of differential equations. Most current
lithium-ion battery models are derived from theories that describe charge/discharge and
species (chemical participants in battery reactions) transport in the solid and electrolyte
phases across a simplified spatial cell structure. This model considers dynamics along the
x-axis and neglects the dynamics along the remaining two axes to reduce complexity.
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3.1.1 Doyle-Fuller-Newman Model

3.1.1 Doyle-Fuller-Newman Model

A typical lithium-ion cell consists of four main components: the negative composite
electrode, the positive composite electrode, the separator, and the electrolyte. The
negative electrode contains lithium stored in graphite lattice sites, while the positive
electrode can have various chemistries, usually a metal oxide. During discharge, lithium
ions diffuse to the surface of active material particles in the negative electrode, undergo
electrochemical reactions, and transfer into a liquid electrolyte solution. The ions then
travel through the electrolyte solution to the positive electrode where they react and
diffuse towards the inner regions of metal oxide active material particles. The process is
reversed for charging.

Lithium is considered to exist in two disjoint states called phases: the solid phase
in the electrode material and the liquid phase in the dissolved state in the electrolyte.
The solid and electrolyte phases are treated as superimposed continua without regard to
microstructure [17].

The lithium-ion concentration in a single spherical active material particle can be
described by the equation
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where cs,k(x, r, t) is the concentration of lithium ions in the solid phase at position x,
radius r, and time t, and Ds,k is the diffusion coefficient in the solid phase.

The lithium ions in the electrolyte phase change due to the changes in the gradient
diffusive flow of lithium ions, which can be described by the equation
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where ce,k(x, t) is the concentration of lithium ions in the electrolyte phase at position x
and time t, ✏k is the electrolyte volume fraction, De↵,k is the effective diffusion coefficient
in the electrolyte phase, ak is the electrode surface area per unit volume, t+ is the
transference number, and Jk(x, t) is the molar flux.

Charge conservation in the solid phase of each electrode can be described by the
equation
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where �e↵,k is the effective conductivity in the solid phase, �s,k(x, t) is the solid phase
potential at position x and time t, F is the Faraday constant, and Jk(x, t) is the molar
flux.

Combining Kirchhoff’s law with Ohm’s law in the electrolyte phase yields the equation
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3.1.1 Doyle-Fuller-Newman Model

Figure 1: Doyle-Fuller-Newman model: Anode: The negative electrode in the
battery where lithium ions are stored during charging and released during discharging.
Cathode: The positive electrode in the battery that receives lithium ions during charging
and releases them during discharging. Separator: A porous insulating layer that prevents
direct contact between the anode and cathode, while allowing lithium ions to pass through.
Electrolyte: The medium that facilitates the movement of lithium ions between the anode
and cathode during charging and discharging. Pos. Current Collector: A conductive
material at the cathode side that collects the electrical current generated by the movement
of electrons during discharging. Neg. Current Collector: A conductive material
at the anode side that collects the electrical current during charging. Mass Transfer
(Li-Ions): Refers to the movement of lithium ions from the anode to the cathode during
discharging, and vice versa during charging. Charge Transfer (Electrons): Refers to
the movement of electrons from the anode to the cathode through an external circuit
during discharging, and vice versa during charging. This movement of electrons is what
we use as electrical power. Particle (Cathode): In the DFN model, the lithium-ion
particle at the cathode represents the concentration of lithium ions at the particle surface.
This concentration typically increases during discharge due to the diffusion (movement of
ions due to concentration gradients) of lithium ions from the core to the surface, indicating
the influx of lithium ions and vice versa for Particle (Anode) [16].
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3.1.1 Doyle-Fuller-Newman Model

where e↵,k is the effective conductivity in the electrolyte phase, �e,k(x, t) is the
electrolyte phase potential at position x and time t, R is the gas constant, T is the
temperature, and I is the current.

The molar flux depends on the concentration of lithium ions in the electrode, the
concentration of lithium ions in the electrolyte, and the intercalation over-potential
through the Butler–Volmer equation. This over-potential can be described by

µs,k(x, t) = �s,k(x, t)� �e,k(x, t)� Uk (✓k(x, t)) (5)

where µs,k(x, t) is the over-potential, �s,k(x, t) and �e,k(x, t) are the solid and electrolyte
phase potentials at position x and time t respectively, Uk(✓k(x, t)) is the open-circuit
potential as a function of the stoichiometry ✓k(x, t).

The Butler–Volmer equation describes the relationship between the current density,
concentrations and over-potential is given by the equation
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where Jk(x, t) is the molar flux, Kk is the reaction rate constant, cs,k,max is the maximum
concentration in the solid phase, cs,k, surf is the surface concentration in the solid phase,
ce,k(x, t) is the concentration in the electrolyte phase at position x and time t, F is the
Faraday constant, R is the gas constant, T is the temperature, and µs,k(x, t) and µs,k(x, t)
are the over-potentials.

In summary, the battery model is a mixed system with a certain number of nonlinear
partial differential-algebraic equations with the same number of unknowns. However,
it’s important to note that only the most critical equations are stated here to provide
a general understanding of the complexity involved. The complete model, based on the
differential equations and finite difference method, contains additional equations and
initial conditions, further adding to the complexity and the computational requirements
for solving the model [16].

For instance, the terminal voltage of the battery can be calculated from the difference
between the solid phase potential in the positive electrode (�s,p) and the solid phase
potential in the negative electrode (�s,n), minus the overpotential due to the reaction
kinetics and ionic transport in the electrolyte (⌘). This can be represented by the following
equation:

V (t) = �s,p(t)� �s,n(t)� ⌘(t) (7)

Similarly, the State-of-Charge (SoC) can be calculated by integrating the lithium ion
concentration in the solid phase over the volume of the electrode. This is because the
amount of lithium in the electrode material corresponds to the amount of charge stored
in the battery. The equation for the SoC can be expressed as follows:
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3.1.2 Equivalent Circuit Model

SoC(t) =
1

Vtotal

Z

Velectrode

cs,k(x, r, t) dV (8)

With Vtotal is the total volume of the battery, Velectrode is the volume of the electrode,
and cs,k(x, r, t) is the concentration of lithium ions in the solid phase at position x within
the electrode, at a radial distance r from the center of the active material particle, at
time t.

This level of detail already goes beyond the scope of this thesis. For a more comprehen-
sive understanding and further information on the full model, please refer to the original
sources Dao et al., Doyle et al., Fuller et al., Newman et al. [16, 18, 19, 20].

3.1.2 Equivalent Circuit Model

Equivalent Circuit Models (ECMs) offer a balance between theoretical quantitative models,
which require complex measurements and parameters, and purely mathematical models,
which rely heavily on empirical data. The strength of ECMs lies in their ability to simulate
the electrical behavior of batteries without needing extensive physical information. They
can be tailored to the specific cell chemistry and characteristics, avoiding the risk of over-
or under-modeling. The choice of the equivalent circuit is critical, and it is guided by
understanding the basic structure of a battery and the estimation of the parameters of
the equivalent circuit. The use of techniques such as the least-squares method aids in
parameter extraction. The versatility and adaptability of ECMs make them an invaluable
asset in the modeling of lithium-ion batteries [17].

ECMs are used to represent the electrochemical and electrical components of a battery
cell. The series connection of these equivalent circuit elements forms the entire model for a
battery cell. The architecture of an ECM typically includes resistors, capacitors, inductors,
constant-phase-elements (CPE, a non-ideal capacitor), and Warburg elements (diffusion
impedance element), each representing different aspects of the battery’s behavior. These
elements, as shown in Figure 2, represent ohmic resistances, and capacitive behavior due
to charge accumulation and diffusion processes, respectively.

Parameter estimation is crucial in ECM modeling. The parameters are adjusted to
minimize the difference between the measured impedance spectrum from Electrochemical
Impedance Spectroscopy (EIS) and the ECM’s impedance. EIS measures the battery’s
impedance over a range of frequencies, providing a spectrum that reflects its electrochem-
ical characteristics and processes. This spectrum informs the parameter estimation for
the ECM, as represented by the following equation:

arg min
R,C,L,CPE,W

fmaxX

n=fmin

|ZEC(R, C, L, CPE, W, fn)� Zmeasure,n|
2 (9)

In the given equation, ZEC denotes the impedance of the equivalent circuit. The
parameters R, C, L, CPE, and W define the circuit’s characteristics. fn is the frequency,
and Zmeasure,n is the impedance obtained from EIS measurements. The objective is to
minimize the discrepancy between the equivalent circuit’s impedance and the measured
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3.1.2 Equivalent Circuit Model

Figure 2: Resulting equivalent circuit elements from individual cell components. RCu:
Resistance of the copper current collector at the anode, accounting for ohmic losses.
Ra, Wa, CPEa: Ra is the anode resistance, Wa is the Warburg impedance (diffusion -
movement of ions due to concentration gradients), and CPEa is a Constant Phase Element
representing non-ideal capacitive behavior, often due to material properties. RSEI,a,
CPESEI,a: Represent the SEI layer at the anode, a passivation layer that stabilizes
the cell but adds to resistance and limits ion transport, impacting battery performance.
Relectrolyte: Represents the resistance of the electrolyte, the medium for lithium-ion
migration (movement of ions due to potential difference) between the anode and cathode.
Rseperator, Cseperator: Represent the separator, a barrier allowing ion flow but preventing
direct anode-cathode contact. Rseperator is the separator resistance, and Cseperator is its
capacitance. Rfilmcathode, CPEfilmcathode: Represent the film layer at the cathode, a
passivation layer similar to the SEI at the anode. This layer adds to resistance and impacts
ion transport, affecting battery performance. Rcathode, Wcathode, Ccathode: Rcathode is the
cathode resistance, Wcathode is the Warburg impedance (diffusion), and Ccathode is the
capacitance, typically exhibiting more ideal behavior than the anode. RAl: Resistance of
the aluminum current collector at the cathode, accounting for ohmic losses [17].
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impedance across frequencies ranging from fmin to fmax. EIS offers experimental data
essential for adjusting the ECM parameters, ensuring the model mirrors the battery’s
actual behavior. This approach is pivotal for parameter estimation, making it essential
for developing a dependable and precise battery model [17]. Often, simplified versions of
this intricate yet accurate ECM are employed. These versions exclude CPEs and Warburg
elements, typically comprising one to three RC branches. They may not require EIS
measurements for parameter estimation, as the necessary parameters can be derived from
the time domain of pulse characterization.

Furthermore, like electrochemical models, ECMs can also be used to estimate the
State-of-Health (SoH) of a battery, which is a measure of its current condition compared
to its ideal state. The SoH estimation is a complex process that requires extensive
measurement data, often collected over several months. This data, which includes the
battery’s response to various operating conditions and states of charge, is used to adjust
the parameters of the ECM over time, allowing the model to accurately reflect the aging
processes and degradation mechanisms occurring within the battery. This long-term
tracking and modeling of the battery’s behavior provide valuable insights into its SoH,
enabling more effective battery management and prolonging its useful life. It is only for
completeness stated here and will not be part of the study.

3.2 Synthetic Dataset Generation for Machine Learning

Synthetic data generation is a pivotal technique in machine learning, particularly relevant
to battery technology applications. This approach creates artificial data that closely
mirror real-world battery operation data, proving invaluable when such data is limited,
expensive to gather, or when privacy concerns restrict its use. A diverse synthetic dataset
that encapsulates the entire operational spectrum of a battery system is crucial. It ensures
that the machine learning model is exposed to a wide array of battery performance
scenarios, enabling it to learn and generalize effectively. This is highly important in
battery technology where the operational field is vast, encompassing various charge-
discharge cycles, ambient conditions, and usage patterns. Furthermore, the quality and
diversity of the dataset significantly influence the speed and stability of model convergence,
a point where the model’s learning plateaus after being trained on the dataset. A well-
constructed synthetic dataset can ensure faster and more stable convergence, leading to a
more accurate and reliable model for predicting battery performance and lifespan [21, 22].

3.2.1 Dataset Design for Comprehensive Battery Operation

The generation of synthetic battery data is a process that is based on the utilization of an
ECM with multiple Resistance-Capacitance (RC) branches. This model is validated based
on corresponding measurements for parameter estimation. The ECM model is simple in its
requirements, needing only a current profile and conditions such as ambient temperature
and initial State-of-Charge (SoC). The output from the ECM model is terminal voltage,
surface temperature, and SoC.
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3.2.1 Dataset Design for Comprehensive Battery Operation

The current profile is generated using a set of subprofiles. These include constant,
linear, step, sinusoidal, and drive-cycle slices. Each of these subprofiles represents a
different real-world scenario that a battery might encounter. For instance, a constant
current profile could represent a battery providing a steady power output, while a linear
profile could represent a battery whose load is gradually increasing or decreasing. A step
profile could mimic a sudden change in load, such as turning on a large appliance, while a
sinusoidal subprofile could represent a cyclic load pattern. Drive-cycle slices, on the other
hand, are derived from real-world driving data and are representative of the varied and
unpredictable power demands of an electric vehicle. These drive cycles are sourced from
PyBaMM, an open-source battery modeling software [23]. The drive-cycle profile is split
into buckets, each of which is randomly chosen and concatenated to form the complete
subprofile.

The dataset contains individual instances of these subprofiles, a concatenated and
superimposed version of them. The concatenated version is created by joining different
subprofiles end-to-end until the total time length is reached. The superimposed version
is created by overlaying different subprofiles on top of each other until the total time
length is reached. The subtimeframes for the concatenated and superimposed profiles
are generated at random. Each parameter for these profiles is sampled from a uniform
distribution. This includes time, amplitude, and offsets for all profiles. For the sinusoidal
subprofile, frequency and phase shift are also sampled from a uniform distribution. These
profiles are not generated without constraints. They are designed to not exceed the
SoC range and not exceed the maximum allowable current for charging and discharging,
ensuring the synthetic data remains representative of feasible real-world conditions.

The process begins with the ECM model, into which the constrained current profile is
fed. The model processes this input and generates outputs containing terminal voltage,
surface temperature and State-of-Charge.

The generic equations for the random subprofile can be represented as follows:
For a constant current profile:

I(t) = I0 (10)

For a linear current profile:
I(t) = I0 + kt (11)

For a step current profile:

I(t) =

(
I1 if t < t1

I2 if t � t1
(12)

For a sinusoidal current subprofile:

I(t) = I0 + A sin(!t + �) (13)

For a drive-cycle subprofile:

I(t) = concat(Ibucket1 , Ibucket2 , ..., Ibucketn) (14)
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For a concatenated profile with n segments:

I(t) = concat(I1(t), I2(t), ..., In(t)) (15)

For a superimposed profile with n segments:

I(t) =
nX

i=1

Ii(t) (16)

In these equations, I(t) represents the current at time t, I0 is the initial current, k is
the rate of change of current, t1 is the time at which the step change occurs, I1 and I2 are
the current values before and after the step change, A is the amplitude of the sinusoidal
current, ! is the angular frequency, and � is the phase. Ibucketi represents each bucket in
the drive-cycle subprofile.

The constraints on the profiles can be represented as:

0  SoC  1

�Imax  I(t)  Imax

(17)

where Imax is the maximum allowable charging or discharging current and the SoC is
determined by the integration of the current over time and standardized afterward. The
synthetic data generated is representative of a wide range of real-world scenarios. The
random generation of subtimeframes for the concatenated and superimposed profiles,
along with the random sampling of parameters from a uniform distribution, ensures a
diverse and comprehensive dataset, further enhancing its utility in real-world applica-
tions. These profiles are generated multiple times with different initial conditions for
ambient temperature and corresponding different current boundaries, further increasing
the diversity and representativeness of the synthetic data.

3.2.2 Dataset Analysis for Diversity and Learning Convergence

The intricate dynamics of battery systems necessitate comprehensive data analysis to
understand their behavior and performance. A detailed examination of this data is solely
illustrated on the LFP cell for one-third of the dataset.

Over a defined period, a concatenated current profile is shown in Figure 3. This profile,
created from the integration of several subprofiles, follows battery-specific criteria such as
current and capacity limits. It displays multiple charge and discharge cycles in the series.
Parameters like voltage, temperature, and SoC are derived from an ECM based on this
profile.

From Figure 3, two main observations can be made. Firstly, the current, which is crucial
for the ECM, displays significant variations, affecting the voltage. These variations result
from the battery’s electrochemical reactions. When current flows through the battery,
the cell voltage experiences an immediate change due to internal resistance, intensified by
rapid ion movements.

In contrast, temperature and SoC exhibit more stable behaviors. The temperature
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Figure 3: Concatenated synthetic battery data profile over a specified duration. The top
three subplots present the inputs: current, voltage, and temperature. The bottom subplot
illustrates the SoC evolution. Derived from an ECM using diverse subprofiles, the high
dynamics in current and voltage are attributed to immediate electrochemical reactions.
Conversely, the temperature and SoC dynamics, shaped by cumulative effects, are more
tempered. These profiles illuminate the battery’s behaviors across different real-world
scenarios.

reflects both reversible and irreversible reactions and its gradual change represents the
combined heat effects, differing from the current and voltage behaviors. The SoC’s steady
changes are due to its role in summarizing cumulative charge and discharge activities,
smoothing out quick fluctuations.

Outside the shown profile, the larger dataset contains various subprofiles. These are
essential for enhancing the synthetic battery data. The profiles increase the dataset’s
adaptability, ensure model stability for different inputs, support in-depth analysis, and
provide adaptability for specific research needs.

Figure 4 displays a 3D visualization of synthetically generated current profiles, which
have been reduced in dimensionality using Principal Component Analysis (PCA). Initially,
these profiles existed in high-dimensional sequences. PCA transforms these sequences
into three principal components, capturing the most significant features and variances of
the data.

PCA aims to maximize data variance with the fewest components. Thus, the positioning
and sizes of clusters in this reduced space reflect their relationships in the original space.
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Figure 4: Three-dimensional PCA representation of synthetically generated current
profiles. Distinct clusters correspond to various profile types, with overlaps indicating
shared electrochemical characteristics. The plot encapsulates the intricate balance of
foundational patterns, complexities from sinusoidal and drive-cycle subprofiles, and
operational constraints, highlighting the diverse, realistic, and safe spectrum of synthetic
battery data.

The patterns and differences seen among clusters represent the relationships in the
full-length current profiles.

Clusters in the scatter plot symbolize different current profiles. Overlaps between
clusters indicate similarities in profile traits. For instance, segments in the "concatenated"
profile might resemble those in "linear" or "step" profiles. These overlaps highlight the
nuances in synthetic current profile creation and suggest that various generation methods
can produce similar electrochemical patterns.

The dynamics in the "concatenated" and "superimposed" clusters arise from the
inclusion of sinusoidal and drive-cycle subprofiles. Sinusoidal subprofiles introduce pe-
riodic changes, while drive-cycle subprofiles, derived from real driving scenarios, add
unpredictability. Their combination results in a complex pattern, evident in the broad
distribution of these clusters.

Examining cluster positions offers insights. Distinct clusters indicate unique generation
methods, while close clusters suggest shared characteristics. A cluster’s size might indicate
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3.2.2 Dataset Analysis for Diversity and Learning Convergence

the diversity within that profile type.
The scatter plot’s boundaries reflect the limits set during synthetic current profile

creation. Amplitude boundaries correspond to charging and discharging limits for battery
safety.

Continuing to the according to input representation, Figure 5 presents a 3D visualization
of the synthetic dataset derived from the ECM, illustrating the relationships between
three critical battery parameters: current, voltage, and temperature.
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Figure 5: Three-dimensional visualization of synthetic battery data from the ECM,
showcasing the relationships between current, voltage, and temperature. Each axis defines
their operational ranges. Color gradients indicate data point densities, emphasizing
regions of higher concentration and shedding light on the battery scenario distribution.

Each visualization axis has specific constraints. The current axis is limited by the
battery’s maximum charging and discharging currents. The voltage axis defines the
battery’s safe operational range, while the temperature axis covers the battery’s viable
temperature range.

The primary 3D surface plot, smoothed using Gaussian filtering, depicts temperature as
a function of current and voltage. The filtering technique reduces potential high-frequency
noise, making the visualization clearer. Color gradients, determined using Kernel Density
Estimation (KDE), highlight data point densities. KDE offers insights into dataset
patterns and concentrations.
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Examining further, positive current regions correspond to charging, while negative ones
relate to discharging. The surface’s variations suggest transients in the original profiles.
In an unsmoothed version, these would manifest as distinct spikes, indicating sudden
battery state changes reflecting response to unpredictable demands. Slow or minimal
changes represent steady-state operations.

The visualization emphasizes both dynamic and static battery processes. The charging
and discharging phases, combined with transient data, attest to the dataset’s comprehen-
sive nature. It provides a wide perspective on potential battery scenarios and confirms
the reliability of its synthetic current profile generation. The visualization represents
a dataset that captures a broad spectrum of real-world battery behaviors, balancing
diversity, realism, and safety.

Examination of model complexity about dataset size is crucial for optimal performance.
Figure 6 delves into this relationship, analyzing the interplay between the optimizer’s
update steps, dataset size, and the losses from an optimized decoder-only model. As
training progresses, a marked reduction in loss is evident, signifying the model’s capacity to
refine its predictions over iterations. Interestingly, despite the application of regularization
techniques during training, the training loss remains consistently higher than the validation
loss.

When analyzing the test loss with the growing dataset size, a clear inverse relationship
emerges. The loss diminishes, suggesting an optimal dataset size that ensures efficient
training while preserving the model’s predictive accuracy.

A deeper dive into the decoder-only model structure reveals that, given adequate
training time and model size, the validation loss converges to near-perfect accuracy levels.
This precision starkly contrasts with the test loss, which accounts for concatenated outputs
across various time windows. The model’s training technique, predicting subsequent
time steps based on prior accurate data rather than its predictions, further supports
this observation. It’s worth noting that during both training and evaluation phases, the
model consistently relies on actual data inputs, avoiding its predictions, unlike in the test
scenario with multiple windows.

In conclusion, thorough evaluations validate the dataset’s robustness, its fitting size,
and its diverse nature, making it well-suited for intricate battery modeling challenges.
The model discussed, which will be elaborated on in subsequent sections, represents the
final optimized version. This section’s emphasis is on the dataset’s appropriateness and
the reasoning behind its size to the selected model.
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Figure 6: Visualization highlights the connection between optimizer update steps, dataset
size, and model losses. Regularization techniques result in a higher training loss compared
to validation. An increasing dataset size correlates with a decreasing test loss, pointing
towards an optimal data threshold. Within the decoder-only setup, the validation loss
achieves high accuracy, contrasting with the test loss derived from concatenated outputs.

3.3 Principles of Selected Machine Learning Models

In battery technology, computational modeling is essential for analyzing complex mecha-
nisms and accurate predictions. The Extreme Gradient Boosting (XGBoost) algorithm
is valued for its ability to model non-linear battery relationships. State-Space Neural
Networks capture battery dynamics over time, while Convolutional Neural Networks
(CNNs) analyze spatial data structures in battery systems. Recurrent Neural Networks
(RNNs) are effective for sequence data, making them suitable for time-dependent battery
attributes. Transformer-based Neural Networks, with attention mechanisms, provide
a deeper understanding of battery behaviors. These machine learning models aim to
enhance battery modeling and analysis techniques.

3.3.1 Extreme Gradient Boosting

The XGBoost regression model, a scalable tree-boosting system, is a compelling choice for
tasks such as battery modeling. This model operates by creating an ensemble of decision
trees, where each subsequent tree is built to correct the errors made by the previous
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3.3.1 Extreme Gradient Boosting

ones. This is achieved through a process known as gradient boosting, which involves
the application of the gradient descent algorithm to minimize the loss when adding new
models.

The model is trained in an additive manner, with each tree being added to minimize
the objective function, which is a combination of a differentiable loss function and a
regularization term. The regularization term helps to control the model’s complexity,
reducing overfitting and improving generalization. The objective function is optimized
using a second-order approximation, which can be computed efficiently and makes the
model robust to outliers.

The XGBoost regression model is popular due to its scalability and efficiency. It runs
significantly faster than many existing solutions and can handle large datasets, making it
suitable for real-world applications. It also supports parallel and distributed computing,
which further enhances its speed and scalability.

The main parameters of the XGBoost regression model include the maximum depth of
the trees, the learning rate (also known as shrinkage), and the subsampling ratio. The
maximum depth controls the complexity of the trees, the learning rate determines the
step size at each iteration of the gradient descent algorithm, and the subsampling ratio
specifies the fraction of the training data to be used for growing each tree, which can help
to prevent overfitting.

In the context of battery modeling, the XGBoost regression model can capture complex
nonlinear relationships between the input features and the target variable. However, it’s
important to note that the XGBoost regression model requires a flattened input structure.
This means that all input features must be transformed into a one-dimensional array or
vector. The advantage of this approach is that it allows the model to handle a wide range
of data structures, from simple numerical data to more complex time-series data.

The flattening process maintains the correspondence between each input and its
associated output during training. This is a crucial aspect of the XGBoost algorithm’s
(Algorithm 1) design, as it ensures that the model learns the correct associations between
the input features and the target variable, even when the input data is transformed.

Algorithm 1 High-Level XGBoost Working Principle
1: inputs flatten(inputs)
2: model initialize model
3: for t 2 range(iterations) do
4: Compute gradient and hessian of loss based on flattened inputs
5: tree fit new decision tree to the gradient statistics
6: Update the model by adding the new tree
7: end for
8: predictions model.predict(inputs)
9: loss loss(predictions, outputs)

By maintaining the correspondence between the flattened inputs and outputs, the
XGBoost regression model can effectively learn the complex relationships in the data,
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3.3.2 State-Space Neural Network

making it a powerful tool for battery modeling [24].

3.3.2 State-Space Neural Network

The S4 model, also known as Structured State Spaces, is a method for battery modeling
and other applications that necessitate the management of long-range dependencies
(LRDs). This model is built upon several key components, each contributing to its overall
functionality and efficiency illustrated in Figure 7.
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Figure 7: Left: State Space Models (SSMs), characterized by matrices A, B, C, and D,
facilitate the transformation of an input signal u(t) into an output y(t) via a hidden state
x(t). Center: Recent theoretical advancements in continuous-time memorization has led
to the development of unique A matrices, enabling SSMs to mathematically and empiri-
cally encapsulate Long-Range Dependencies (LRDs). Right: SSMs can be calculated
either through a recurrent method or a convolutional approach. However, actualizing
these theoretical perspectives necessitate the use of different parameter representations
(indicated in red, blue, green), which are computationally intensive. S4 presents an
innovative parameterization that can efficiently alternate between these representations,
thereby making it capable of managing a broad spectrum of tasks, optimizing both
training and inference processes and excelling in handling extended sequences [25].

The foundation of the S4 model is centered around the state-space representation,
emphasizing the continuous-time latent state model. This can be represented as:

x0(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(18)

In this formulation, x(t) is the latent state of the system at time t, encapsulating a
hidden or internal representation of the system’s instantaneous status. x0(t) quantifies
the temporal evolution of this latent state, reflecting its rate of change. Concurrently,
y(t) is the observable output, representing the system’s externally perceivable prediction
based on its current state and the immediate input. The matrix A is the state transition
matrix, containing the dynamics of the system. This intrinsic behavior is modulated
by the external input u(t) through the input matrix B. The matrices C and D jointly
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3.3.3 Convolutional Neural Network

describe the interplay between the latent state and the system’s output, with C steering
the output based on the internal state and D underscoring any direct influence of the
input on the output.

To manage long-range dependencies, the S4 model incorporates the HiPPO (Opti-
mal function approximation with time-varying measures) method [26]. This method is
encapsulated by the equation:

An,k = �

8
><

>:

(2n + 1)1/2(2k + 1)1/2 if n > k

n + 1 if n = k

0 if n < k

(19)

Where An,k is the element of the HiPPO matrix at the n-th row and k-th column.
The S4 model also includes a Recurrent Representation, which is expressed as:

xk = Āxk�1 + B̄uk Ā = (I�
�

2
· A)�1(I +

�

2
· A)

yk = C̄xk B̄ = (I�
�

2
· A)�1�B C̄ = C

(20)

Where xk and xk�1 represent the latent states at times k and k � 1 respectively, and
uk is the input at time k.

The convolutional representation in the S4 model establishes a connection between
linear time-invariant (LTI) State Space Models (SSMs) and continuous convolutions
(Algorithm 2). The S4 model introduces a novel parameterization that efficiently swaps
between these representations, allowing it to handle a wide range of tasks, be efficient at
both training and inference and excel at long sequences.

Technically, S4 reparameterizes the structured state matrices by decomposing them as
the sum of a low-rank and normal term. Additionally, instead of expanding the standard
SSM in coefficient space, it computes its truncated generating function in frequency space.
Combining these two ideas, the low-rank term can be corrected while the normal term
can be diagonalized stably. This results in a significant improvement in both computation
and memory usage, making the S4 model more efficient and practical for a wide range of
applications [25].

In summary, the S4 model is a powerful and efficient tool for handling long sequences
and complex data structures. It leverages the strengths of State Space Models and the
HiPPO method for handling long-range dependencies, and introduces novel computational
strategies to improve efficiency. Its Convolutional Representation and Structured State
Spaces method allows it to handle a wide range of tasks and excel at long sequences. The
S4 model’s potential in computation and memory usage makes it efficient and practical
for a wide range of applications.

3.3.3 Convolutional Neural Network

An approach to sequence modeling, leveraging the principles of wavelet analysis to create a
multiresolution memory model shown in Figure 8. This model is designed to capture both
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Algorithm 2 High-Level S4Model Working Principle
1: procedure S4Model(x)
2: x Encoder(x) . Shape: [B, L, Inputdim] to [B, L, dmodel]
3: x Transpose(x) . Shape: [B, L, dmodel] to [B, dmodel, L]
4: for each Layer in S4Layers do
5: z  x
6: if PreNorm then
7: z  Normalize(z)
8: end if
9: z  S4DLayer(z)

10: z  Dropout(z)
11: x z + x . Residual Connection
12: if not PreNorm then
13: x Normalize(x)
14: end if
15: end for
16: x Transpose(x)
17: x Mean(x, dim = 1) . Pooling over Sequence Length
18: x Decoder(x) . Shape: [B, dmodel] to [B, Outputdim]
19: return x
20: end procedure

21: procedure S4DLayer(u)
22: L GetLength(u)
23: k  GenerateKernel(L) . SSM Kernel
24: kf  FFT(k, n = 2L)
25: uf  FFT(u, n = 2L)
26: y  IFFT(uf ⇤ kf , n = 2L)[:, : L] . Convolution
27: y  y + u ⇤D . Skip Connection
28: y  Activation(y)
29: y  Dropout(y)
30: y  OutputLinear(y)
31: return y
32: end procedure
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long-term and short-term dependencies in sequence data, which is particularly beneficial
for tasks such as battery modeling.
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M
ul

tir
es

La
ye

r

Figure 2. (Left) M C consists of a sequence of dilated convolutions that share the same filters across all levels. Here

Figure 8: Left: The architecture of MultiresConv comprises a series of dilated convo-
lutions that utilize the same filters h0, h1 across all levels. This illustration showcases
TreeSelect with the "resolution fading" strategy, which maintains the right-most coeffi-
cient at each level of a0, b0:J�1, as highlighted by the magenta outlines. Right: This is
a schematic representation of the MultiresBlock structure. Each channel of the input
sequence is processed independently in the MultiresLayer. The 1x1 convolution facilitates
the mixing of information across channels. Constructing a deep sequence model by
stacking multiple MultiresBlocks [27].

The foundation of this approach is the Discrete Wavelet Transform (DWT), which is a
mathematical tool used to decompose a signal into different frequency components. The
DWT is defined by the following recursion:

aj(n)
�
= aj,n =

K�1X

k=0

aj+1(2n + k)h0(k)

bj(n)
�
= bj,n =

K�1X

k=0

aj+1(2n + k)h1(k)

(21)

where aj(n) and bj(n) are the approximation and detail coefficients at scale j, h0(k)
and h1(k) are the low-pass and high-pass filters, and K is the length of these filters.

The multiresolution convolution (MultiresConv) operation is then defined as:

a0,b0:J�1 = MultiresConv(x,h0,h1, J), (22)

where x is the input signal, h0 and h1 are the low-pass and high-pass filters, and J is
the number of scales. This operation can be viewed as multiple layers of dilated causal
convolutions on the sequence up to a timestep.

The TreeSelect operation is then defined as:
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at0,b
t

0:J�1 = MultiresConv(x(0 : t),h0,h1, J), (23)

zt = TreeSelect((at0,b
t

0:J�1), M), (24)

where at0,b
t

0:J�1 are selected and relevant subset of the representation coefficients at
time t, and M is the memory size. The TreeSelect operation selects the most relevant
scales from the multiresolution memory.

The output of the TreeSelect operation is then fed into a linear layer to produce the
final output (Algorithm 3).

Algorithm 3 High-Level MulitresConv Working Principle
1: procedure MulitresConvModel(x, h0, h1, J, M)
2: for j  0 to J do
3: a, b MultiresConv(x, h0, h1)
4: x a
5: end for
6: zt  Treeselect(a, b, M)
7: output LinearLayer(zt)
8: return output
9: end procedure

10: procedure MultiresConv(x, h0, h1)
11: a 

P
K�1
k=0 x(2n + k)h0(k)

12: b 
P

K�1
k=0 x(2n + k)h1(k)

13: return a, b
14: end procedure

15: procedure Treeselect(a, b, M)
16: at0, b

t

0:J�1  Multiresconv(x(0 : t), h0, h1, J)
17: zt  Select((at0, b

t

0:J�1), M)
18: return zt
19: end procedure

The proposed model is compared with the S4 algorithm, demonstrating superior
performance in terms of capturing both long-term and short-term dependencies. The
model is particularly well-suited to battery modeling, where it is important to capture
the complex dynamics of battery behavior over time [27].

3.3.4 Recurrent Neural Networks

The Long Short-Term Memory (LSTM) network, a type of recurrent neural network,
processes a sequence of input and target pairs. For each pair, the LSTM takes the new
input xi and produces an estimate for the target yi based on all previous inputs. The
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3.3.4 Recurrent Neural Networks

state of the network, comprising a hidden vector h and a memory vector m, is determined
by the past inputs. The network then calculates a series of gate values:

gu = �(WuH)

gf = �(WfH)

go = �(WoH)

gc = tanh(WcH)

m0 = gf �m + gu � gc

h0 = tanh(go �m0)

(25)

Here, gu, gf , go, and gc are the update, forget, output, and cell gates respectively.
Wu, Wf , Wo, and Wc are the recurrent weight matrices of the network, and H is the
concatenation of the new input xi and the previous hidden vector h.

The memory vector is then updated as a combination of the forget gate applied to the
previous memory and the update gate applied to the cell gate m0.

The new hidden vector is computed as the output gate applied to the updated memory
vector h0 [9, 28].

The Unbounded Recurrent Unit (UR-LSTM) is an improvement over the standard
LSTM model. It introduces a new gate, the UR gate, which is computed in addition to the
standard LSTM gates. The UR gate allows the model to control the flow of information in
a more nuanced way, leading to better performance on tasks with complex dependencies
and hierarchical structure. The UR gate is defined as follows:

rt = �(P (xt, ht�1))

gt = rt · (1� (1� ft)
2) + (1� rt) · f2

t

ct = gt · ct�1 + (1� gt) · ut

(26)

where ft is the original forget gate, rt is the refine gate, with P a parameterized linear
function, ut is the input gate, and ct is the cell state. The gate rt linearly interpolates
between the lower band f2

t and the symmetric upper band 1� (1� ft)2. In other words,
the original gate ft is the coarse-grained determinant of the effective gate gt, while the
gate rt "refines" it [29].

The Stacked LSTM extends the LSTM model by stacking multiple LSTM layers on
top of each other, with the output hidden vector h0 from one LSTM layer serving as
the input to the layer above. Essentially, the Stacked LSTM uses the same equations as
the standard LSTM, but the input to each layer (except the first) is the hidden vector
from the layer below depicted in Figure 9. The operation of a Stacked LSTM can be
represented as Algorithm 4.

The 2D Grid LSTM further extends the concept of the Stacked LSTM to multiple
dimensions, arranging LSTM cells in a grid with two dimensions: time and depth (Figure 9).
At each time step t and layer l, the input to the LSTM is a concatenation of the hidden
state from the previous time step at the same layer and the hidden state from the same
time step at the previous layer. The memory vector at each time step and layer is updated
based on the input and the previous memory vector, using the same gate computations
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Figure 9: The application of Stacked LSTM and 2D Grid LSTM is demonstrated in
character prediction. In the Grid LSTM, it’s noteworthy that the signal traverses through
LSTM cells (represented by shaded rectangles) in both time and depth dimensions. The
dashed lines symbolize identity transformations. Unlike the standard LSTM block, which
lacks a memory vector in the vertical dimension, the 2D Grid LSTM block incorporates a
memory vector along the vertical axis [28].

Algorithm 4 High-Level Stacked-LSTM Working Principle
1: procedure StackedLSTM(src)
2: Initialize hidden states with zeros
3: Initialize a list of LSTM layers
4: for each layer i in the stack do
5: out, (h0, c0) = LSTM(src, (h0, c0)) . Update states
6: src = out . Pass output to next layer
7: end for
8: output = Linear(out) . Final output
9: return output

10: end procedure
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3.3.5 Transformer-Based Neural Networks

as in the standard LSTM [28]. The operation of a 2D-GridLSTM can also be represented
as Algorithm 5.

Algorithm 5 High-Level 2D-GridLSTM Working Principle
1: procedure GridLSTM(input, hx)
2: Initialize a 2D grid of LSTM cells
3: Initialize a list of hidden states hxs
4: for each layer i in the grid do
5: if hx[i] is None then
6: Initialize hx[i] with zeros . Initial states
7: end if
8: htime, hdepth, ctime, cdepth = hx[i]
9: htime, hdepth, ctime, cdepth  GridCell(input, htime, hdepth, ctime, cdepth)

10: Store states
11: Store layer outputs to hxs
12: end for
13: output = Linear(hxs) . Final layer cell states
14: return output
15: end procedure

16: procedure GridCell(input, htime, hdepth, ctime, cdepth)
17: htime, ctime = Time-LSTM(cat(input, hdepth), htime, ctime)
18: hdepth, cdepth = Depth-LSTM(cat(input, htime), hdepth, cdepth)
19: return htime, hdepth, ctime, cdepth
20: end procedure

In the context of battery modeling, the input at each time step could be a vector of
features representing the current state of the battery, such as the current charge level, the
temperature, the load, etc. The LSTM could be trained to predict the future state of the
battery based on these features. A Stacked LSTM or 2D Grid LSTM could potentially
capture more complex dependencies between these features and provide more accurate
predictions. The UR-LSTM, with its refined gating mechanism, could further enhance
the model’s ability to capture long-term dependencies and complex patterns in the data,
providing a more nuanced and accurate model for battery state prediction.

3.3.5 Transformer-Based Neural Networks

The Transformer architecture, introduced in the groundbreaking paper "Attention is All
You Need", has revolutionized the field of sequence transduction [13]. The architecture’s
ability to capture both short-term and long-term dependencies in data makes it a powerful
tool for tasks that require an understanding of temporal dynamics, such as battery
modeling.

The Transformer architecture is composed of two main components: the encoder and
the decoder visualized in Figure 10. Each of these components is constructed using a
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3.3.5 Transformer-Based Neural Networks

stack of identical layers, which allows the model to learn more complex patterns in the
data. The stacking of layers is a key feature of the Transformer, enabling it to model
intricate dependencies.

At the heart of the Transformer is the attention mechanism, which operates on the
concept of queries, keys, and values. The query is the current time step in a time series
being processed, the key is a set of time steps (the input sequence) to be compared with
the query, and the value is the information to be retrieved based on the comparison. The
attention mechanism calculates the similarity between the query and each key, and then
uses these similarity scores to weigh the corresponding values. This results in a context
vector that represents the relevant information from the entire sequence for the current
value.

The attention mechanism in the Transformer is called "Scaled Dot-Product Attention".
The inputs to this function are queries and keys of dimension dk, and values of dimension
dv. The dot products of the query with all keys are computed, and divided by

p
dk, and

a softmax (converts scores to probabilities summing to one) function is applied to obtain
the weights on the values. The attention function can be described as:

Attention(Q, K, V ) = softmax
✓

QKT

p
dk

◆
V (27)

The Transformer extends this basic attention mechanism with the concept of "Multihead
Attention". Instead of applying a single attention mechanism, the Transformer applies
multiple attention mechanisms (or "heads") in parallel, each with its own learned linear
projections. This allows the model to capture various aspects of the input sequence at
different positions. The queries, keys, and values are linearly projected h times with
different learned linear projections, and then the attention function is applied in parallel
to produce the output. The Multihead Attention can be described as:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W
O (28)

where each head is computed as:

headi = Attention(QWQ

i
, KWK

i , V W V

i ) (29)

The Transformer also employs cross-attention in the "encoder-decoder attention" layers.
The queries come from the previous decoder layer, and the memory keys and values come
from the output of the encoder. This allows every position in the decoder to attend to all
positions in the input sequence.

To account for the order of the time steps in a sequence, the Transformer uses positional
encodings, which are added to the input embeddings. This allows the model to make use
of the order of the words when processing the sequence. The positional encodings use
sine and cosine functions of different frequencies, allowing the model to easily learn to
attend by relative positions. The positional encoding for position p and dimension i can
be described as:
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3.3.5 Transformer-Based Neural Networks

Figure 10: The Encoder (Left Part) processes the input sequence, which is an input
tensor of shape [batch, seqlen, dim]. This input is transformed via Input Embeddings
to shape [batch, seqlen, dmodel] and then receives Positional Encoding to add absolute
position information. The Nx Encoder Layers each include Multi-Head Attention
and Feed Forward networks, with Add & Norm for residual connection and layer
normalization. The Outputs of the encoder serve as the latent space in an encoder-
decoder setup, or are fed to a linear layer in an encoder-only setup. The Decoder (Right
Part) generates the output sequence, with Nx Decoder Layers each including Masked
Multi-Head Attention, Multi-Head Attention, and Feed Forward networks. Add
Norm provides residual connection and layer normalization. The Outputs of the
decoder are the final sequence output, which are transformed by a Linear Layer and
then converted to probabilities for prediction by a Softmax Layer [13].
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PE(p,2i) = sin
⇣ p

100002i/dmodel

⌘

PE(p,2i+1) = cos
⇣ p

100002i/dmodel

⌘ (30)

The encoder-only architecture allows for bidirectional communication without masking,
making it suitable for tasks where the entire context of the input sequence is needed for
each value. The decoder, on the other hand, is autoregressive and uses causal masking to
ensure that the prediction for a certain position can depend only on the known outputs
at positions less than the current one. This enforces a certain directionality or causality
in the model.

The latent state in the Transformer architecture is the output of the encoder, which
is used as input to the decoder cross-attention. This state captures the information
from the input sequence and is used to generate the output sequence. This makes the
encoder-decoder architecture particularly useful for tasks where the input and output
sequences are related but not directly aligned [13].

In conclusion, the Transformer’s ability to model global dependencies and its flexibility
in handling different sequence lengths make it a good candidate for transfer-learning and
meta-learning. These properties also make it a promising approach for modeling new
battery chemistries, where only limited data may be available. The Transformer’s ability
to capture complex patterns in data can be particularly useful for tasks like predicting
the remaining SoC of a battery based on historical performance data. The autoregressive
and causal nature of the model, in particular, make it a promising approach for tasks
that require an understanding of temporal dynamics.

3.4 Overview of Software Architecture

The software architecture is designed to automate and streamline the process of battery
model training and evaluation. It commences with the generation of diverse current
profiles, simulating a wide range of battery operating conditions. The resulting data is
then used to train deep learning models. The architecture incorporates automatic saving
and loading of model state dictionaries and hyperparameters, ensuring reproducibility
and facilitating iterative model development. Additionally, it supports automatic hyper-
parameter optimization runs, further improving model performance. The entire process is
designed to be efficient and user-friendly, minimizing manual intervention and maximizing
the effectiveness of the training process.

3.4.1 Profile Generation and Data Extraction

The provided algorithms serve as a comprehensive simulation framework for generating
diverse and extensive datasets, which are crucial for training robust and generalizable deep
learning models. The framework leverages a validated ECM of a battery encapsulated in
an FMU. The FMU is a standard for model exchange and co-simulation, which allows for
seamless integration of the battery model into the simulation environment.
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3.4.1 Profile Generation and Data Extraction

The process begins with the generation of various current profiles, including constant,
linear, pulse, sinusoidal, drive, superimposed, and concatenated profiles. These profiles
represent the current flowing into or out of the battery over time. Each profile is generated
with random parameters for duration and amplitude, introducing variability into the
simulations. This variability is key in ensuring that the resulting dataset covers a wide
range of operating conditions, which is crucial for training a deep learning model that
can generalize well to out-of-distribution data (Algorithm 6).

Algorithm 6 Current Profile Generation
1: profileTypes [const, lin, pulse, sin, drive, superimpose, concat]
2: profiles empty list
3: for type in profileTypes do
4: profile GenerateProfile(type)
5: Append profile to profiles
6: end for
7: FinalChecks(profiles)

8: procedure GenerateProfile(type)
9: duration random value

10: amplitude random value
11: profile generate profile of type with duration and amplitude
12: if capacity of profile exceeds maximum or minimum then
13: Adjust pulse sign and retry
14: end if
15: Pad profile with zeros
16: return profile
17: end procedure

18: procedure FinalChecks(profiles)
19: for profile in profiles do
20: Check boundary conditions
21: end for
22: end procedure

The generated current profiles are then used as input for the battery simulation. For
each current profile, the simulation is run using the FMU, which contains the ECM
battery model. The simulation takes into account the initial State-of-Charge (SOC),
State-of-Health (SOH), thermal resistances, and ambient temperature. These factors are
crucial in influencing battery behavior and are therefore important features to include in
the dataset for the deep learning model (Algorithm 7).

The simulation results are consolidated into a data array, which, along with the
corresponding headers, is saved. The dataset, encompassing a broad range of temperatures,
currents, voltages, and State-of-Charge values, serves as a rich resource for training deep
learning models to predict battery behavior.
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Algorithm 7 FMU Battery Simulation
1: fmu, currF ile load FMU and current profile file
2: ivar  initialize initial values for SOC, SOH, thermal resistances, and ambient

temperature
3: head define headers for data set
4: for each currProfile in currF ile in parallel do
5: SimulateAndStore(currProfile)
6: end for
7: newData concatenate head and data
8: save newData to file

9: procedure SimulateAndStore(currProfile)
10: input create input array from t and currProfile
11: result run simulation with fmu, using input and ivar
12: resultData extract results from result
13: return resultData
14: end procedure

In essence, this code offers a robust framework for extracting battery behavior, gener-
ating diverse current profiles, and creating exhaustive datasets for deep learning model
training. It stands as a potent tool for exploring and comprehending battery behavior, as
well as for developing predictive models of battery performance.

3.4.2 General Training and Inference

The process of battery modeling using deep learning typically commences with the con-
figuration of hyperparameters. These parameters, which govern various facets of the
model and the training process, are generally sourced from an external file. The system
is designed to accommodate adjustments or fine-tuning of these parameters, providing
a mechanism for customization based on specific experimental conditions. After the
hyperparameter setup, the focus shifts to data preparation. The raw battery data is
subjected to a series of preprocessing steps, potentially including standardizing and
partitioning into distinct subsets for training, validation, and testing. This preparation
of data is a prerequisite for effective training and subsequent evaluation of the model.
The selection of the appropriate deep learning model is critical in the process. With the
model selected, the training process is initiated. This involves several steps, including the
computation of initial losses, the configuration of the optimizer and the scheduler, and
the setup of various monitoring mechanisms. These mechanisms, often implemented as
callbacks, offer real-time insights into the training process and can include functionalities
such as checkpoint saving, early stopping, and learning rate monitoring. During the
training process, the model learns from the training data, and its performance is concur-
rently evaluated using the validation data. The best score achieved during the training
process is recorded. In the final stages of the process, the trained model is subjected to a
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rigorous test. If checkpoints were saved during training, these can be loaded to restore
the model to its optimal state. The model is then evaluated using the test data set. Upon
successful completion of the experiment, a success indicator is set to true, and the final
loss, indicative of the model’s performance, is returned and shown in Algorithm 8.

Algorithm 8 Pseudocode for Combined Procedures
1: procedure RunExperiment
2: hyperparams Load hyperparameters from yaml file
3: trainData, valData, testData Setup data
4: baseModel  setup specific model with hyperparams
5: trainer, task  InitExperiment(baseModel, hyperparams)
6: Fit trainer with task, trainData, and validationData
7: loss Get best score from trainer’s callbacks
8: Load checkpoint and weights for best configuration
9: Testset evaluation

10: return loss
11: end procedure

12: procedure InitExperiment(baseModel, kwargs)
13: task  Initialize with baseModel, loss, optimizer, scheduler, etc.
14: Setup logging
15: Configure optimizer and scheduler
16: Define training, validation, and testing procedures
17: Save attention weights (optional)
18: Set model parameters to the optimizer
19: Load model from checkpoint (optional)
20: Save hyperparameters to yaml file
21: Setup checkpoint callback, early stopping and learning rate monitoring
22: trainer  Initialize with callbacks, max epochs, logger, and devices
23: return trainer, task
24: end procedure

3.4.3 Model Parameter Optimization

The process commences with the definition of a configuration space, which is combined
with a general hyperparameter file. This space encapsulates possible combinations of
hyperparameters that the model will be tuned on.

Subsequently, a Scenario is established, incorporating the configuration space and
other parameters. The Scenario provides a comprehensive overview of the information
required to execute the optimization process. An initial design is procured from the
MFFacade, a facade for various types of multi-fidelity model optimization algorithms.
This design serves as the starting point for the optimization process. The intensifier,
set as Hyperband in this instance, is a component that determines the configurations to
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evaluate next based on their performance [30]. Hyperband is an intensification strategy
that strikes a balance between exploration and exploitation by allocating resources to
configurations by their performance. In combination with the MFFacade it is the closest
implementation to Bayesian Optimization Hyperband (BOHB) [31]. The SMAC optimizer
is then instantiated, incorporating the scenario, the training function, the initial design,
and the intensifier. The optimizer navigates the configuration space to identify the
configuration that minimizes the loss returned by the training function. The incumbent
configuration, representing the optimal configuration identified thus far, is obtained by
invoking the optimization method of the SMAC optimizer. The training function is
executed with the seed, budget, and configuration space as parameters. The final stage
of the process involves the validation of the default configuration and the incumbent.
This could entail a comparison of the performance of the incumbent with the default
configuration. The training procedure encapsulates the function that trains and evaluates
a model given a configuration. It initiates by loading the hyperparameters from the
configuration space and a yaml file. The training and validation data loaders are then
established, managing the batching and shuffling of the data. Following the setup of
the model using the loaded hyperparameters, the training process is initiated. Upon
completion of the training, the model is subjected to testing, likely on a separate test set.
The loss, indicative of the model’s performance, is returned. This loss is utilized by the
SMAC optimizer to assess the performance of the configuration as shown in Algorithm 9.
The objective of the optimization process is to identify the configuration that minimizes
this loss [32].

Algorithm 9 HPO run with SMAC3
1: procedure architecture config
2: Define Scenario and Configuration Space
3: Get initial design from MFFacade
4: Define intensifier as Hyperband
5: Define smac as MFFacade with scenario, training, initial design, intensifier
6: incumbent smac.optimize(training(seed, budget, configspace))
7: Validate default configuration and incumbent
8: end procedure

9: procedure training(seed, budget, configspace)
10: Load hyperparameters from Configuration Space and yaml file
11: Setup data
12: Setup model
13: Setup and start training
14: Setup and start testing
15: Return loss
16: end procedure
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4 Results

Sequence-to-sequence modeling, essential for battery performance prediction, is evaluated
across different architectures. The efficiency and appropriateness of these architectures
for the task become evident as the study progresses. Notably, the transformer model,
due to its decoder component, exhibits superior predictive performance, emphasizing the
importance of architectural design in such tasks.

Hyperparameter tuning is also discussed, emphasizing its role in achieving a balance
between model complexity and regularization. This balance is crucial to avoid overfitting
or underfitting, ensuring effective pattern recognition.

Further analysis of the transformer model reveals the significance of attention mech-
anisms. These mechanisms emphasize the importance of selecting appropriate model
parameters. The model’s extensive temporal focus enhances its predictive ability, under-
scoring the role of attention mechanisms in battery modeling.

The study also explores modifications and techniques beyond basic architecture, aiming
to increase the model’s capability. While significant performance improvements are not
always achieved, the research offers valuable insights into the relationship between data
augmentation and output quality.

Additionally, the performance of various architectures is assessed using real-world data.
This assessment and subsequent fine-tuning offer a practical evaluation of the architectures’
resilience and efficiency, leading to the determination of the best configuration for the
final battery model.

4.1 Baseline Model Analysis

An in-depth evaluation of various neural model architectures was undertaken to determine
their proficiency in modeling complex battery data. The main goal was to identify the
architecture best suited for handling the complexities of synthetic battery profiles.

A subset of the dataset, rather than the full set, was used to produce surrogate loss
and models. This method was chosen based on the premise that the outcomes would
apply to the entire dataset, thus saving computational time and resources.

These methods lead to a streamlined neural architecture search. This search focuses on
surrogate models, believed to be indicative of the complete dataset, ensuring a methodical
and evidence-based process to pinpoint the most effective model structures, as shown in
Figure 11.

The y-axis, displayed on a logarithmic scale, outlines loss values, offering a numerical
assessment of model performance. The x-axis lists various neural model architectures,
each representing a distinct analytical approach. Two separate mean squared error (MSE)
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Figure 11: Analyzing neural architectures with synthetic battery profiles, each model’s
performance, inclusive of varied budgets, is denoted by its loss values. Crosses represent
models optimized for validation loss (Window), where the model is evaluated on a single
"window" length, explicitly defined as the model’s input sequence length. Dots symbolize
models optimized for test loss (Complete), where predictions merge multiple such windows
across the entire sequence. The marker distribution indicates stability and parameter
sensitivity. The XGBoost model’s lack of validation loss results is due to a distinct
training method.

categories are applied, corresponding to the test and validation datasets. The test dataset,
which uses multiple windows (where a window is equivalent to the model’s input sequence
length) and is a subset of the full sequence, employs a sliding window approach. This
method sequentially produces predictions based on the model’s fixed window length,
and then combines these results. Conversely, the validation dataset provides a more
focused assessment, evaluating the model over a single window. These evaluation methods
highlight the model’s challenges, from the long-term predictions required by the test set
to the shorter sequences of the validation set. Direct relationships between these two
evaluation methods are not always evident, as shown by optimization cycles.

The visual representation includes specific markers, dots, and crosses, which indicate
the optimization approach used. Dots symbolize models fine-tuned using SMAC3 in a
high-fidelity environment, where an epoch-based budget is set, and optimization is based
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on test loss [32]. On the other hand, crosses represent models with an optimization
focus on validation loss. These optimization goals lead to subtle differences in model
performance across datasets.

The analysis of architecture-specific results reveals distinct patterns:
Decoder: A wide range of loss values for the Decoder model indicates its sensitivity

to hyperparameter changes. With careful tuning, it demonstrates strong predictive
performance. The Decoder effectively navigates different prediction horizons, especially
in shorter sequences, as evidenced by the reduced validation loss.

S4 and MultiConv: Both architectures show broad loss distributions, emphasizing
their pronounced sensitivity to parameter changes. This highlights the importance of
hyperparameter tuning, given the dataset’s complexity.

LSTM and UR-LSTM: These models benefit from the incorporation of multiple
LSTM layers, enabling the extraction of hierarchical temporal features. The UR-LSTM,
with its advanced gating mechanism, offers an improved method for information flow.
However, their performance distribution suggests that while they can capture complex
temporal patterns, optimal performance requires accurate parameter adjustments.

GLSTM and URGLSTM: The underwhelming performance of these models can
be linked to a potential architectural misalignment. The GLSTM is designed for spatial
data processing, but the dataset is mainly temporal, which might cause inefficiencies.
The URGLSTM, being a grid-based version of the UR-LSTM, may have performance
variations due to the grid mechanism’s redundancy in a primarily temporal setting.

XGBoost: Although XGBoost is versatile across various use cases, its alignment with
the sequence-to-sequence structure of this dataset seems limited, as shown by its higher
loss values. The lack of validation loss results from a distinct training approach that
doesn’t include evaluations after each training iteration.

Recognizing outliers emphasizes the importance of hyperparameter settings, highlighting
the delicate balance between optimal and suboptimal model outcomes.

Figure 12 offers a visual comparison of these architectures as they predict battery
State-of-Charge (SoC) using a synthetic battery profile.

In the graph, the black line represents the ground truth, while individual traces illustrate
each model’s time-based predictions. The Decoder model stands out for its alignment
with the ground truth throughout, reflecting its ability to interpret the intricate patterns
of the synthetic battery dataset.

Other models, such as LSTMs, S4, and MultiConv, show oscillatory predictions. These
oscillations, more evident in the magnified inset, suggest difficulties in the optimization
process. Gated LSTM models, in particular, tend to produce outliers in dynamic regions.

When comparing these visual oscillations with prior MSE loss values, it’s evident that
the MSE loss is less sensitive to outliers. As a result, models like the Decoder, which
produce consistent predictions, might have MSE values similar to those of oscillating
models that accurately predict certain linear segments. However, the practical implications
of their predictions can differ significantly.

The absence of XGBoost in the graphical comparison underscores its challenges with
sequence-to-sequence tasks, suggesting that while XGBoost excels with structured data,
it struggles with sequential datasets.
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Figure 12: Graphical comparison of neural architectures predicting battery State-of-
Charge (SoC) over time. The black trace indicates the ground truth, with colored traces
representing predictions from different models. The Decoder model shows significant
alignment with the ground truth. Conversely, models like LSTM and MultiConv display
oscillatory predictions. The inset magnifies these oscillations, emphasizing the difficulties
some models encounter in understanding the dataset’s subtleties.

Figure 13 provides a detailed comparison of the top-performing models. It’s important
to clarify that the test loss in this evaluation is based on the entire sequence length using
concatenated windows, which differs from previous evaluations that used multiple window
lengths over a section of the complete sequence.

LSTM: The LSTM architecture is designed to capture patterns over long sequences.
Its layered design allows for the extraction of temporal dynamics. The memory cells in
LSTMs enable them to store and access information over extended periods, making them
suitable for sequential datasets. However, the complexity of this architecture can lead to
extended training and inference times due to its sequential nature, which limits parallel
processing.

MultiConv: The MultiConv design uses multiple convolutional layers, each designed
to detect different resolutions in the input data. Due to the numerous convolutional
kernels and weights, these architectures require more computational resources, explaining
the increased memory and time requirements. However, their ability to detect spatial
data hierarchies often results in better performance metrics, evidenced by their test loss
value of 8.84⇥ 10�4.
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Figure 13: Radar plot showing the performance metrics of leading neural architectures
[min, max]. The plot includes metrics like memory usage, training time, and parameter
count. The test loss (MSE), calculated over the full sequence with concatenated windows,
provides insights into each model’s sequence prediction capability.

S4: The S4 model is structured to handle long sequences by organizing state spaces
systematically. This design allows it to detect long-term data dependencies without
excessive computational demands, leading to its moderate memory and time metrics.

Decoder: Transformer models, especially the decoder-focused variant, are known for
their parallel processing capabilities, allowing them to handle different sequence positions
simultaneously. This parallelism explains the time efficiency of such a sophisticated
architecture. The self-attention mechanism in the decoder enables it to focus on various
parts of the input sequence, effectively detecting long data dependencies. Its performance
is further supported by a test loss of 1.19⇥ 10�3, a reduced validation loss of 4.02⇥ 10�6,
and a parameter count of 150⇥ 103.

Encoder: Similar to the decoder, the encoder-only Transformer variant also benefits
from parallel processing. However, without the auto-regressive context of the decoder, its
ability to interpret sequential data may be limited, as seen in its performance metrics.

In summary, while the MultiConv model exhibits the lowest test loss, its oscillatory
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4.2 Refinement of Transformer Architecture

predictions might pose challenges in practical applications. The Decoder architecture,
given its consistent results and with proper parameter adjustments, stands out as the
most suitable for battery state estimation.

4.2 Refinement of Transformer Architecture

After evaluating multiple model architectures, the Transformer structure was identified
as a promising candidate, especially when compared to baseline models. While the
encoder-only variant was previously analyzed and found lacking, a complete assessment
of the full Transformer on the same dataset, encompassing both encoder and decoder,
was yet to be conducted. Parameters associated with the decoder played a key role in
defining the configuration for the entire Transformer. These parameters encompassed
aspects like model dimensions and the number of attention heads. An in-depth analysis
was conducted on different training methods for the encoder, experimenting with various
masking techniques. This included distorting the input to ensure the model predicted only
the output values and using forward prediction based on causal masking [33]. Alongside
the decoder, the potential of cross-attention causal masking was investigated. Adjustments
to parameters, such as the number of layers, were also examined. Results showed that the
performance of the full Transformer was comparable to the decoder-only variant. However,
the decoder-only model, with its simpler training process and reduced parameter space,
emerged as a more streamlined choice for further development.

Hyperparameter Tuning: Hyperparameter tuning is fundamental in machine learn-
ing, essential for determining configurations that align with specific dataset attributes, as
illustrated in Figure 14. In this research, hyperparameter selection was limited to the
most impactful ones, with choices for model dimensions and attention heads informed by
previous studies.

Throughout the experiments, a consistent batch size of 32 was maintained. The
optimizer, scheduler, and seed were kept constant, with the seed reapplied for each run to
ensure consistent results. The dropout rate, a technique to mitigate overfitting, involves
randomly nullifying a fraction of units during training, promoting model robustness [34].
The weight decay parameter, vital for the AdamW optimization algorithms, acts as a
regularization tool [35, 36]. Proper tuning of this parameter is crucial to balance overfitting
and underfitting. The Tmax hyperparameter, linked with cosine annealing schedulers,
adjusts the learning rate, potentially helping to avoid local minima [37]. Optimal results
were observed with minimal dropout and weight decay values, suggesting that excessive
regularization might not be beneficial for smaller models and datasets. A moderate
engagement of cosine annealing, as indicated by Tmax, was also advantageous.

Model depth, represented by the number of layers, is a central topic in deep learning.
Although deeper models can capture intricate patterns, results indicated that a model
with a moderate number of layers was best suited for the given data. The sequence length,
crucial for predictions, defines the model’s temporal analysis scope. A median sequence
length was found optimal, suggesting that altering this parameter might not necessarily
improve model precision. Given a restricted evaluation budget, the optimization aimed
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4.2 Refinement of Transformer Architecture

to achieve the lowest loss within set boundaries.
The learning rate, essential for gradient-based optimization, determines the step size

during loss minimization. Precise calibration of this parameter is vital to prevent issues
like oscillations or slow convergence.

For a thorough exploration of the hyperparameter space, SMAC3, known for its Bayesian
optimization capabilities, was utilized within a structured multi-fidelity framework [32].
This procedure was limited to a third of the dataset, with a maximum epoch count of 15.
The results in Figure 14 emphasizes the significant impact of each hyperparameter on
overall model performance.

Final Hyperparameter Selection: Hyperparameters are chosen through a rigorous
combination of empirical evaluations and theoretical insights. For this research, the final
selection was largely influenced by the partial dependencies assessment, with certain
modifications made to enhance model efficacy. Specifically, the sequence length and the
number of layers were increased, anticipating future dataset expansion and potential
meta-learning applications. In such contexts, maximizing the parameter count is essential
to fully leverage the data. Regularization and training parameters were directly sourced
from the previous analysis, striking a balance between model intricacy and generalizability.
The batch size was also modified to maximize GPU efficiency. Table 1 details the final
hyperparameter selection.

In summary, the selected hyperparameter set reflects careful consideration and design,
aiming to extract optimal performance from the model given the dataset’s specific
challenges and traits.

Decoder Attention Mechanism: Attention mechanisms in the Transformer archi-
tecture plays a pivotal role, in enhancing the model’s ability to identify and prioritize
significant portions of input data, especially in sequence-to-sequence prediction tasks.
This mechanism defines the temporal scope from which the model extracts information
for inference, as outlined by the parameters in Table 1.

Figure 15 illustrates the decoder’s attention distribution for this task. Contrary to
initial assumptions, the model’s attention isn’t solely focused on the sequence’s end.
Instead, attention spans the entire sequence, indicating that the model considers a broad
temporal range of data points when making predictions.

The model exhibits increased attention to areas with significant input changes and varies
across layers. This suggests that the Transformer’s decoder is proficient at recognizing and
prioritizing both recent and historical data, especially during significant input variations.
This aligns with insights from the hyperparameter tuning phase, reinforcing the model’s
predictive reliability in battery modeling tasks.

Exploring Advanced Architectures: Beyond conventional architecture, various
novel techniques were explored. One approach integrated convolutional layers, aiming
to replace standard positional encoding, with the goal of better capturing local input
dependencies. However, the expected improvements were not realized. Another method
applied the Short-Time Fourier Transform (STFT) to input signals. After transformation,
these signals passed through a linear layer to match the necessary model dimensions and
were then integrated into the model similar to positional encoding, termed "dynamic
encoding". This approach also did not yield significant enhancements. These experiments
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4.2 Refinement of Transformer Architecture

Hyperparameter Value
Dataset Range Standardized [0,1]
Number Sequences 3000 (3 different ambient temperatures)
Full Sequence Length 5400
Data Dimensions 4 (Current, Voltage, Temperature, SoC)
Optimizer AdamW
Learning Rate (Lr) 0.002
Weight Decay 0.001
Scheduler CosineAnnealing
Tmax 15
Batch Size 128
Loss Function Mean Squared Error
Model Dimensions 64
Sequence Window Length (seqlen) 350
Number of Heads (nheads) 16
Layers 8
Dropout 0.05
Total Parameters 350⇥ 103

Table 1: Final hyperparameter configuration derived from a combination of empirical
evaluations and theoretical considerations. This configuration is informed by partial
dependencies evaluation with modifications to cater to the potential dataset expansion
and meta-learning scenarios. The table showcases the balance achieved between model
complexity and generalization, with parameters optimized for computational efficiency
and GPU utilization.

highlight that simply adding or diversifying data and input features doesn’t guarantee
improved model performance.
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Figure 14: Detailed visualization of the hyperparameter tuning landscapes using SMAC3
in battery modeling. This representation emphasizes the interdependencies between
parameters, highlighting the dynamics that contribute to optimal model performance.

46



4.2 Refinement of Transformer Architecture

1 51 101 151 201 251 301

0

100

200

300

SoC Current Voltage Temperature

0 50 100 150 200 250 300
Time [s]

Low HighAttention

Figure 15: Decoder Attention Distribution across sequence length for the fourth layer.
This visualization demonstrates the dispersion of the decoder’s attention (center) through-
out the input sequence (bottom, left) when predicting SoC (top). Rather than a unilateral
focus on terminal data points, the attention is uniformly distributed, with pronounced
peaks at regions corresponding to significant input variations. The pattern accentuates
the Transformer decoder’s ability to assimilate both recent and historical data, especially
during pivotal input shifts, to enhance predictive fidelity in battery modeling tasks.

47



4.3 Final Assessment

4.3 Final Assessment

The Decoder model’s efficacy in battery modeling was assessed using a randomized current
profile tailored to real-world applications. Specifically designed for the Nickel Manganese
Cobalt (NMC) cell, this profile emulates practical scenarios, underscoring the model’s
applicability. In contrast, the Lithium Iron Phosphate (LFP) models were refined and
evaluated using only laboratory data. Four distinct models were developed for each
chemistry.
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Figure 16: Comparison of model performances for NMC chemistry. The models include:
one trained solely on the synthetic NMC dataset (NMC/NMC), one initially trained
on the synthetic LFP dataset and fine-tuned on NMC data (LFP/NMC), one trained
using a meta-learning approach incorporating both synthetic datasets (META), and the
Equivalent Circuit Model (ECM). The performance of each model is visualized against
the ground truth, which employs coulomb counting to estimate the SoC.

For NMC, the first model was trained on the synthetic NMC dataset and refined
with NMC lab data, which also provided parameters for the Equivalent Circuit Model
(ECM). The second model began its training on the synthetic LFP dataset, showcasing
cross-chemistry adaptability, and was later refined using a mix of NMC lab and dynamic
dataset. The third model employed a meta-learning strategy, initially trained on both
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4.3 Final Assessment

synthetic datasets (NMC and LFP) and then refined with NMC lab and a portion of the
dynamic dataset. The fourth model was based on the ECM framework, closely mirroring
lab measurements. The NMC models were tested on unseen segments of the dynamic
dataset, as shown in Figure 16.

The LFP models followed a similar structure, as depicted in Figure 17. The first model
was trained on the LFP synthetic dataset and refined with LFP lab data, which also
facilitated ECM parameter extraction. The second model started on the NMC synthetic
dataset and was later refined with LFP lab data, highlighting model transferability. The
third model utilized meta-learning, with initial training on both synthetic datasets and
subsequent refinement on LFP lab data. The fourth model was the LFP’s ECM.
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Figure 17: Comparative analysis of model performances for LFP chemistry. The models
include: one trained solely on the synthetic LFP dataset (LFP/LFP), one initially trained
on the synthetic NMC dataset and fine-tuned on LFP data (NMC/LFP), one trained
using a meta-learning approach incorporating both synthetic datasets (META), and the
Equivalent Circuit Model (ECM). The performance of each model is visualized against
the ground truth, which utilizes coulomb counting to estimate the SoC.

All models, regardless of training variations, demonstrated a robust grasp of the data
structure. Models initially trained on the LFP synthetic dataset and later refined for
specific chemistries showed superior performance.
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Dataset Model MSE MAE

LFP

LFP/LFP 7.3e-4 2.0e-2
NMC/LFP 5.8e-4 1.9e-2

META 1.9e-2 1.2e-1
ECM 3.5e-4 1.5e-2

NMC

NMC/NMC 1.6e-3 3.8e-2
LFP/NMC 8.3e-5 8.0e-3

META 2.7e-3 4.9e-2
ECM 1.0e-7 2.9e-4

NMC 10�C
LFP/NMC

3.0e-4 1.5e-2
NMC 20�C 1.6e-1 3.6e-1
NMC 40�C 1.6e-1 3.6e-1

Table 2: Quantitative metrics for various models. The table displays the MSE and
MAE for each model trained on NMC and LFP datasets, benchmarked against the
ground truth derived from coulomb counting. Models include those trained on synthetic
datasets of the same chemistry (NMC/NMC, LFP/LFP), those trained on synthetic data
of a different chemistry and refined on the target chemistry (NMC/LFP, LFP/NMC),
meta-learning models (META), and the Equivalent Circuit Model (ECM). The ECM
provides values aligned with lab measurements, offering a quantitative perspective on
each model’s accuracy in estimating the State-of-Charge (SoC)

It’s vital to recognize that the ECM model’s SoC estimation aligns with lab measure-
ments, both employing coulomb counting—a method integrating current over time—to
estimate SoC. This straightforward method is effective, providing a reliable comparison
baseline for the various models. Even with its inherent constraints, like potential drift in
current measurements due to temperature fluctuations, the SoC discrepancy in the tested
scenarios remains minimal, affirming its validity as a benchmark.

The Decoder model’s performance was quantitatively validated using metrics such as
Mean Squared Error (MSE) and Mean Absolute Error (MAE), as detailed in Table 2. For
the LFP dataset, the model trained and refined on LFP data exhibited the lowest errors.
Conversely, for the NMC dataset, the model initially trained on LFP and subsequently
refined on NMC outperformed the rest.

The top-performing model for NMC was further assessed across various ambient
temperatures, as depicted in Figure 18. Even though this data was part of the training
set within a specific window length, the model’s predictions closely matched the ground
truth across multiple windows. This consistency underscores the model’s capability to
manage temperature fluctuations, emphasizing its practical relevance.

It’s important to note that ECMs are designed for specific cell types, with their capacities
inherently integrated. This design makes them less flexible for transfer learning. In this
study, two chemistries, NCM and LFP, were examined, each with distinct capacities:
64Ah and 2.6Ah. Transfer learning attempts using these ECMs would produce misaligned
outcomes, as the State-of-Charge depends on this set capacity, always ranging between 0
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Figure 18: Performance evaluation of the leading model for NMC across different
temperatures. This visualization highlights the model’s accuracy, initially trained on
the synthetic LFP dataset and refined on NMC data, across diverse temperatures (10°C,
20°C, 40°C). The model’s predictions across multiple window lengths align closely with
the ground truth, indicating its resilience to temperature variations in practical settings.

and 1. This observation underscores the need for adaptable modeling techniques that can
cater to different chemistries and capacities.
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5 Discussion

This study builds upon previous research by establishing a benchmark on a single dataset
and introducing a model novel to the battery domain, while also exploring the concept
of cross-battery learning. The research centers on battery modeling using deep learning,
with a particular emphasis on the application of a decoder-only model. This model has
shown significant potential when applied to battery modeling, especially in processing
complex time-series data, crucial for a detailed and accurate battery representation.

The model’s performance is largely due to the dataset employed, a combination of
synthetic and real-world data. This dataset encompasses diverse battery behaviors
and usage scenarios, facilitating tests ranging from different chemistries to varied usage
patterns. It serves as a robust foundation for deep learning in battery modeling.

The research offers a detailed analysis of various deep learning architectures, assessing
their suitability for battery modeling. This analysis provides insights into the current
state and potential of deep learning in battery modeling, highlighting the strengths,
weaknesses, and challenges of each model. However, certain limitations accompany the
study’s findings.

Data: The synthetic dataset, crafted within time limitations, aimed to robustly evaluate
deep learning’s role in battery modeling. It effectively balanced detailed data with model
simplicity. While the dataset is comprehensive, there’s potential for expansion, especially
in diverse dynamic scenarios. Current data focus mainly on automotive drive cycles,
omitting areas like maritime and urban profiles beyond automotive. A deeper dive into
data entropy could reveal intricate dependencies. A more detailed dataset analysis might
lead to more versatile models. The field data, though extensive, is predominantly based
on specific ECM testing data. Expanding the data to cover diverse real-world scenarios
would offer a holistic battery behavior view. Future research could benefit from diverse
dynamic profiles and exploring varying step sizes. Considering time explicitly, rather
than implicitly, might also provide valuable insights. For a comprehensive battery life
prediction meta-model, it’s essential to include diverse battery chemistries.

Baseline Models: The study employed a diverse range of architectures to assess their
suitability for time series modeling in the context of battery data. Among these, certain
models exhibited commendable performance, effectively capturing the intricacies of the
battery behavior. However, as indicated in Figure 12, some models displayed tendencies
towards oscillation. The root causes of these oscillations could span from inherent
architectural instability to the necessity for more tailored adjustments. Hyperparameter
optimization, particularly in areas like the learning rate and the optimizer, also emerged
as a pivotal factor influencing model behavior.

Furthermore, fusion approaches, which combine the strengths of multiple architectures
or methodologies, present a promising avenue for exploration. Such approaches can
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potentially harness the strengths of individual models while mitigating their weaknesses,
leading to more robust and accurate battery models.

While the current architectures provided valuable insights, the study acknowledges the
vast landscape of deep learning architectures and fusion techniques yet to be explored.
Incorporating more diverse and advanced architectures, along with and beyond state-of-
the-art fusion strategies, in future studies, could further enhance the understanding and
performance in battery modeling.

Decoder: Decoder-only Transformer models effectively addressed the oscillation chal-
lenges seen in other models, thanks to their attention mechanism. However, the O(n2)
memory and time complexity of the Transformer architecture is a concern. While Flash
Attention offers a solution to the quadratic memory complexity, but the time complex-
ity remains a challenge [38]. The Transformer, even with fewer parameters than some
advanced models, effectively comprehends data structures, suggesting optimization poten-
tial. Explorations might include new activation functions, optimization techniques, and
embeddings. Significant architectural modifications, however, would demand increased
computational resources.

Evaluation: Figure 11 shows the validation loss is lower than the test loss, indicating
potential overfitting. This is evident in Figure 16 and 17, where initial model performance
is strong but wanes over time. The teacher-forcing training method, which makes models
rely on actual previous inputs over their predictions, might be a factor, as noted in
Figure 6. Using models’ outputs as inputs in an autoregressive fashion might address
this. Techniques like "scheduled sampling" could enhance model robustness over longer
sequences and reduce ground truth reliance [39]. Exploring different loss functions might
also influence autoregressive predictions. Transfer learning capabilities, as shown in
Table 2, indicates that models trained on one chemistry might be adaptable to others.

In summary, this research underscores the transformative potential of deep learning in
battery modeling. The decoder-only models, in particular, have showcased remarkable
proficiency, especially in processing complex time-series data. The comprehensive dataset,
encompassing both synthetic and real-world data, has been instrumental in achieving
these results. Furthermore, the study’s detailed analysis of various architectures provides
valuable insights into the current state of deep learning in this domain. While the results
are promising, there’s still room for improvement, particularly in dataset diversification
and model optimization. As the field continues to evolve, this research serves as a
foundational step, highlighting both the achievements so far and the avenues for future
exploration.
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6 Conclusion

This study embarked on a journey to harness the capabilities of deep learning for lithium-
ion battery modeling, emphasizing decoder-only architectures. Given the dynamic nature
of the battery market, where new cell types are frequently introduced, there’s often a
scarcity of comprehensive data for these novel cells. However, the use of synthetic data,
especially derived from FMUs, offers a promising solution. This dataset, encompassing a
broad spectrum of battery behaviors, not only validated its quality but also showcased its
applicability in real-world scenarios. Such an approach underscores the potential of deep
learning models to efficiently process diverse data, optimizing its utilization.

In the quest to identify the most suitable architecture, the research benchmarked
various machine learning models. The decoder-only model stood out, reinforcing the
adaptability and efficiency of deep learning and championing the democratization of model
development. Although the ambitious goal of meta-learning wasn’t fully actualized, the
transformer model displayed a commendable ability to transfer learning across different
chemistries. When tested against an unseen dataset, the Decoder exhibited robust
generalization capabilities. However, it should be mentioned that the model did not
surpass the performance of traditional ECM models.

In summation, the research extended the field of battery modeling using machine
learning. The model demonstrated accuracy, adaptability, and computational efficiency,
especially during inference. The study’s venture into meta-learning, though not fully
actualized, highlighted its potential in model adaptability across battery chemistries
and capacities. The transformer model, with its meta-learning approach, exhibited
strong performance in transfer learning. While there were certain limitations, the study
underscored the combined potential of deep learning and meta-learning in battery modeling,
pointing toward future research directions.
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